更多>>精华博文推荐
更多>>人气最旺专家

小林三平

领域:中国发展网

介绍:到今天,电视60年的发展,传播力越来越大,电视工作者自己更要有责任感、使命感,要坚持把有营养的东西,传播给亲爱的观众”。...

陈凤仪

领域:腾讯

介绍:摘要:秋分时节,各地五谷丰登、瓜果飘香。国际利来ag厅,国际利来ag厅,国际利来ag厅,国际利来ag厅,国际利来ag厅,国际利来ag厅

利来国际最给力的老牌
本站新公告国际利来ag厅,国际利来ag厅,国际利来ag厅,国际利来ag厅,国际利来ag厅,国际利来ag厅
nja | 2018-12-19 | 阅读(65) | 评论(405)
听取审议了《残疾人保障法》、《人口与计划生育法》、《义务教育法》贯彻执行情况的报告,指出了法律法规实施中存在的问题和差距,提出了加强和改进相关工作的意见建议,对进一步推进依法治区进程,具有较强的指导性,有力促进了法律法规在我区的贯彻实施。【阅读全文】
国际利来ag厅,国际利来ag厅,国际利来ag厅,国际利来ag厅,国际利来ag厅,国际利来ag厅
4wx | 2018-12-19 | 阅读(922) | 评论(181)
3、发展中国特色社会主义文化,就要推动中国优秀传统文化创造性转化,创造性发展,不断铸就中华文化新辉煌。【阅读全文】
e4e | 2018-12-19 | 阅读(619) | 评论(498)
2013年,东京新宿新大久保举行“仇恨言论”游行(共同社)在人称东京“韩国街”的新大久保地区,常常有“反韩”示威,参与者举着“韩国人滚出日本”“韩国人是蟑螂”等标语游街。【阅读全文】
my5 | 2018-12-19 | 阅读(721) | 评论(49)
1月**日,保先教育活动开始进入组织发动,深入学习阶段,在这个阶段自己认真学习《保持共产党员先进性教育读本》和***学习材料汇编,认真做好学习笔记,撰写心得体会,积极参加***组织的保先动员报告、牛玉儒先进事迹、党、国际形势报告、科学发展观和中国经济专题报告会的五个一活动,完成了动员学习阶段的任务。【阅读全文】
iev | 2018-12-19 | 阅读(459) | 评论(754)
(例如、就收捡购物车篮说看起是一项最简单的劳动岗位,实际上这个岗位的任务也有很多,除收捡购物车篮外,还要替换其它岗位的临时活动、随时监视员工的纪律、观察卖场的各种现象等等。【阅读全文】
jp3 | 2018-12-18 | 阅读(218) | 评论(720)
最大化的满足了被侵权者的诉求。【阅读全文】
nop | 2018-12-18 | 阅读(918) | 评论(4)
下图为上海市人口机械增长率与自然增长率变化图。【阅读全文】
awn | 2018-12-18 | 阅读(841) | 评论(844)
 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂【阅读全文】
国际利来ag厅,国际利来ag厅,国际利来ag厅,国际利来ag厅,国际利来ag厅,国际利来ag厅
2tk | 2018-12-18 | 阅读(543) | 评论(558)
ABSTRACTisChina.whichsituatedontheintersectionoftheCircum.PacificseismiczoneandEurasianseismicfromdisasterzone,suffersearthquake5.12Wenchuancreatedgreatlyearthquakelarge—scaleandotherdisastersofthewasorslopeⅦhichunprotectedinadequatelyandmadelossestothelifeandprotectedhugepeople。【阅读全文】
vcy | 2018-12-17 | 阅读(190) | 评论(229)
用户服务条款尊敬的用户:您好!欢迎光临文档投稿赚钱网站。【阅读全文】
a3z | 2018-12-17 | 阅读(947) | 评论(490)
 最大值与最小值学习目标重点难点1.知道函数的最大值与最小值的概念.2.能够区分函数的极值与最值.3.会用导数求闭区间上不超过三次的多项式函数的最大值、最小值.重点:函数在闭区间上的最值的求解.难点:与函数最值有关的参数问题.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有______________,则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值________.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有____________,则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值________.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的________;(2)将第(1)步中求得的________与______,______比较,得到f(x)在区间[a,b]上的最大值与最小值.预习交流1做一做:函数y=x-sinx,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))的最大值是______.预习交流2做一做:函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为______.预习交流3(1)函数的极值与最值有何区别与联系?(2)如果函数f(x)在开区间(a,b)上的图象是连续不断的曲线,那么它在(a,b)上是否一定有最值?若f(x)在闭区间[a,b]上的图象不连续,那么它在[a,b]上是否一定有最值?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)f(x)≤f(x0) 惟一 (2)f(x)≥f(x0) 惟一2.(1)极值 (2)极值 f(a) f(b)预习交流1:提示:∵y′=1-cosx≥0,∴y=x-sinx在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))上是增函数,∴ymax=π.预习交流2:提示:∵f′(x)=3x2-3a=3(x2-af(x)在(0,1)内有最小值,∴方程x2-a=0有一根在(0,1)内,即x=eq\r(a)在(0,1)内,∴0<eq\r(a)<1,0<a<1.预习交流3:提示:(1)①函数的极值是表示函数在某一点附近的变化情况,是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义区间上的情况,是对整个区间上的函数值的比较,具有绝对性.②函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性;而极大值和极小值可能多于一个,也可能没有,例如:常函数就没有极大值,也没有极小值.③极值只能在函数的定义域内部取得,而最值可以在区间的端点取得.有极值的不一定有最值,有最值的不一定有极值,极值有可能成为最值,最值只要不在端点处则一定是极值.(2)一般地,若函数f(x)的图象是一条连续不断的曲线,那么f(x)在闭区间[a,b]上必有最大值和最小值.这里给定的区间必须是闭区间,如果是开区间,那么尽管函数是连续函数,那么它也不一定有最大值和最小值.一、求函数在闭区间上的最值求下列函数的最值:(1)f(x)=-x3+3x,x∈[-eq\r(3),eq\r(3)];(2)f(x)=sin2x-x,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),\f(π,2))).思路分析:按照求函数最值的方法与步骤,通过列表进行计算与求解.1.函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值分别是__________.2.求函数y=5-36x+3x2+4x3在区间[-2,2]上的最大值与最小值.1.求函数在闭区间上的最值时,一般是先找出该区间上使导数为零的点,无需判断出是极大值还是极小值,只需将这些点对应的函数值与端点处的函数值比较,其中最大的是最大值,最小的是最小值.2.求函数在闭区间上的最值时,需要对各个极值与端点函数值进行比较,有时需要作差、作商,有时还要善于估算,甚至有时需要进行分类讨论.二、与最值有关的参数问题的求解已知当a>0时,函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.思路分析:先求出函数f(x)在[-1,2]上的极值点,然后与两个端点的函数值进行比较,建立关于a,b的方程组,从而求出a,b的值.若函数f(x)=-x3+3x2+9x+a在区间[-2,2]上的最大值为20,求它在该区间上的最小值.【阅读全文】
wo3 | 2018-12-17 | 阅读(937) | 评论(1)
一、质量安全“十严禁”红线(三)严禁内业资料弄虚作假。【阅读全文】
qht | 2018-12-17 | 阅读(781) | 评论(667)
之后,你才可以将这粒营养丰富的“活维生素丸”吃下。【阅读全文】
ly2 | 2018-12-16 | 阅读(400) | 评论(92)
【知识体系】见p86-88考点清单1、地壳物质循环2、地质构造及地质剖面图的判读3、主要的外力作用及外力作用的综合分析【重难点突破】从岩浆到形成各种岩石,又到新岩浆的产生,这一运动变化过程,构成了地壳物质循环。【阅读全文】
gsd | 2018-12-16 | 阅读(158) | 评论(152)
二、教学方式需要更自由开放。【阅读全文】
共5页

友情链接,当前时间:2018-12-19

利来国际旗舰版 利来国际娱乐平台 利来国际 利来娱乐国际ag旗舰厅 利来娱乐国际最给利老牌网站是什么
利来国际娱乐 w66.con 利来国际最给力的老牌 w66.com 利来国际手机版
利来娱乐老牌 利来国际w66平台 利来娱乐网 利来国际老牌 w66.利来国际
利来国际旗舰版 利来国际最给利的老牌 利来国际w66.com 老牌利来 利来国际w66
青州市| 社会| 黄浦区| 嘉荫县| 城固县| 海淀区| 潍坊市| 汉源县| 和平区| 丹东市| 辉南县| 枣强县| 永年县| 德钦县| 汨罗市| 林口县| 宜宾市| 扬州市| 桃园市| 特克斯县| 宁波市| 新巴尔虎右旗| 临泉县| 长沙市| 张北县| 临夏县| 景谷| 隆尧县| 邵阳县| 辛集市| 大悟县| 精河县| 山阳县| 鄢陵县| 新绛县| 米林县| 孝义市| 登封市| 洱源县| 深水埗区| 苏州市| http:// http:// http:// http:// http:// http://